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Abstract - -A summary  discussion is given of at tempts  to quantify the degree of non-coaxiality of rock flow from 
observations of rock structure,  and of some principles governing the sensitivity of structure to non-coaxiality. 
This is preceded by an extended review of relevant terminology, since some of the current confusion about 
rotational features in rocks stems from confusion about basic concepts and terminology from cont inuum 
mechanics. The kinematic vorticity number  has been estimated for naturally deformed rocks from three 
localities. These yield vorticity numbers  ranging from 0.35 to 0.9, corresponding to flows intermediate in 
character between pure and simple shearing. 

INTRODUCTION 

THIS paper  reviews rotational properties of rock flow 
and finite deformation,  and progress made in estimating 
the degree of non-coaxiality in natural flows. There is 
also some discussion of principles that govern whether 
and why developing rock structure is sensitive to the 
presence of a rotational component  in the flow. These 
are increasingly popular  subjects for research and part of 
a desirable long-term trend to view finite deformation 
structures in rocks as the residue of progressive defor- 
mation histories and associated progressive structural 
changes (Flinn 1962). The purpose of such work is to 
place greater constraints on models of rock flow history 
and associated deformation processes than can be pro- 
vided by strain data alone. More extended explanations 
of rotational properties of flow than the summary given 
here, can be found in Passchier (1988) and Hanmer  & 
Passchier (1991, pp. 5-22). 

T E R M I N O L O G Y  

Strain 

Strain is used in two different ways in contemporary  
structural geology. Both are correct usages, with respec- 
table roots. In the usage of Ramsay & Huber  (1983, p. 
13) (also Nadai 1950, p. 112, Jaeger 1969, p. 33), strain is 
a change in configuration of particles of a body with 
components  of distortion and rotation. A rotational 
strain is a strain with a non-zero rotational component .  
In the usage of Means (1976, p. 145) (also Nye 1957, p. 
99, Malvern 1969, p. 125), a strain is just the distortional 
part  of a general deformation.  The rotation is a separate 
component .  In this usage, there is no such thing as a 
"rotational strain' ,  only a rotational deformation. One 
practical justification for the narrower usage is that most 
so-called 'strain analyses'  measure distortion only, not 
distortion-plus-rotation. Whichever usage one adopts, 

consistency within a given discussion is helpful. The 
meaning of strain employed here is the narrow one. 

Partitioning 

Most writers speak of strain partitioning when they 
mean a spatially uneven distribution of strain, over 
subregions or domains within some larger region. A 
special case of this usage is when one speaks of defor- 
mation mechanism partitioning, where different mech- 
anisms dominate in, and develop distinct strains in, 
different subregions within a body. One can also speak 
of strain-rate, strain-path or vorticity partitioning, etc., 
again referring to a pattern of spatial heterogeneity in 
these quantities. 

When strain is parti t ioned over  a region, it is con- 
venient to have a term for the part  of the regional or bulk 
strain contributed by all domains of a given kind, for 
example domains characterized by dominance of differ- 
ent deformation mechanisms. I suggest the term partial 
strain for this purpose (Fig. 1). In particular circum- 
stances, a partial strain may be, for example,  a 'twinning 
strain' or a "pressure solution strain' or an 'M-domain 
strain',  etc. 

Within any given kind of domain in a strain- 
partitioned material,  there may be a characteristic local 
strain. I suggest that this be called a local strain. The 
relationship between bulk strains, local strains, and 
partial strains are further explained in Fig. 1. Bulk 
strains are weighted averages of local strains, and sums 
of partial strains. Similar terminology can be used for 
any partit ioned quantity, for example strain-rate, 
dilation-rate or vorticity. 

Superposition 

Strain or deformation superposition refers to a time 
sequence of successive strains or deformations affecting 
one volume of material.  An example is the superposition 
of a folding deformation upon an earlier, layer-parallel- 
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Fig. 1. Local, bulk and partial strains, illustrated using a line of grains of two different species, a and b, to represent two 
types of strain domains. The vertical line of grains shortens 50% where it crosses grains a and 10% where it crosses grains b. 
These are the local strains in each type of domain, L a and Lb. The total or bulk strain of 40% of the whole line of grains is 
made up of two partial strains (Pa = 38%, Pb = 2%), which are the contributions to the bulk strain made, respectively, by all 
grains of type a and of type b. The partial strains depend in turn on the local strain in each type of grain and on the length 
fraction X (in the original state) of grains b (Xb) and a (Xa = 1 - Xb), as shown in the lower equation. The graph represents 
this equation, for all possible values of Xb. The two heavy lines show the partial strains, which vary linearly with Xh. The 
inclined lighter line represents the sum of the partial strains at any Xb, which gives the bulk strain B. The length of the 

vertical dashed line at Xb = 0.25 corresponds to the bulk strain for the case illustrated. 

s h o r t e n i n g  d e f o r m a t i o n  (e .g .  S i m o n  & G r a y  1982). 

W h e r e  the  d e f o r m a t i o n s  a r e  l a rge ,  s u p e r p o s i t i o n  n e e d s  

to  be  c a r r i e d  o u t  m a t h e m a t i c a l l y  by m a t r i x  mu l t i p l i c a -  

t ion  (see  R a m s a y  & H u b e r  1983, p. 292).  

Factorization 

Fin i t e  s t ra in  o r  d e f o r m a t i o n  f a c t o r i z a t i o n  is m a t h e -  

m a t i c a l  decomposi t ion of  t h e s e  q u a n t i t i e s  in to  par t s  

wh ich  can  be  r e c o m b i n e d ,  by m a t r i x  m u l t i p l i c a t i o n ,  to 

y ie ld  t he  o r ig ina l  q u a n t i t y  ( R a m s a y  & H u b e r  1987, p. 

638).  F a c t o r i z a t i o n  can  be  ca r r i ed  o u t  fo r  a w i d e  va r i e t y  

o f  p u r p o s e s .  Be l l  (1979) f a c to r i z e s  to s e p a r a t e  a t e c t o n i c  

s t ra in  e l l ipse  f r o m  a p r e - t e c t o n i c  f ab r i c  e l l ipse .  E v a n s  & 

D u n n e  (1991) f a c t o r i z e  to de f ine  a p r o p o s e d  t i m e  se- 

q u e n c e  o f  t e c t o n i c  even t s .  D e  P a o r  (1986) f ac to r i ze s  to 

i so la te  a v o l u m e - c h a n g e  c o m p o n e n t .  O e r t e l  & R e y m e r  

(1992) f a c t o r i z e  to s e p a r a t e  a loca l  s t ra in  p e r t u r b a t i o n  

f r o m  an a v e r a g e  s t ra in .  A l l  t h e s e  a re  p e r f e c t l y  va l id  

f a c to r i z a t i ons .  In  s o m e  cases  t he  m a t r i x  m u l t i p l i c a t i o n  

c o r r e s p o n d s  to  a s u p e r p o s i t i o n ,  b u t  in o t h e r s  it d o e s  not .  

T h e r e  a re  a lways  an inf in i te  n u m b e r  o f  m a t h e m a t i c a l l y  

va l id  f a c t o r i z a t i o n s  o f  a s t ra in  o r  d e f o r m a t i o n ,  m o s t  o f  

t h e m  use less .  

Rotation 

A n  i m p o r t a n t  f a c t o r i z a t i o n  fo r  p r e s e n t  p u r p o s e s  is the  

f a c t o r i z a t i o n  o f  a f in i te  d e f o r m a t i o n  in to  c o m p o n e n t s  o f  

r o t a t i o n  and  s t ra in .  Th i s  can  be  d o n e  in two  ways  (Fig.  

2). A s t ra in  c o m p o n e n t  can  be  f o u n d  tha t  pre-multiplies 
t he  r o t a t i o n .  Th i s  is ca l l ed  the  left-stretch tensor. O r  a 

s t ra in  c o m p o n e n t  can  be  f o u n d  tha t  post-multiples t he  

r o t a t i o n  ( the  right stretch tensor). T h e  c o m p o n e n t s  o f  t he  

two  s t r e t ch  t en so r s  a re  d i f f e r en t ,  b e c a u s e  t h e y  c o r r e -  

s p o n d ,  r e s p e c t i v e l y ,  to p e r f o r m i n g  the  s t ra in  in t he  
r o t a t e d  o r  o r ig ina l  s ta tes  ( S c h w e r d t n e r  1979) (Fig.  2). 

T h e  r o t a t i o n  pa r t  has  i den t i ca l  c o m p o n e n t s ,  w h i c h e v e r  

d e c o m p o s i t i o n  is used .  I t  r e p r e s e n t s  t he  r i g i d - b o d y  ro-  

t a t i on  tha t  w o u l d  ca r ry  t he  o r t h o g o n a l  m a t e r i a l  l ines  in 

t he  p r inc ipa l  d i r e c t i o n s  o f  s t ra in ,  f r o m  the i r  o r i e n t a t i o n s  

in t he  o r ig ina l  s ta te  to  t he i r  o r i e n t a t i o n s  in t he  d e f o r m e d  

s ta te .  T h e  r o t a t i o n a l  pa r t  o f  any f ini te d e f o r m a t i o n  can 

a lso  be  d e f i n e d  as the  average r o t a t i o n  o f  all m a t e r i a l  

l ines  pass ing  t h r o u g h  a par t i c le .  Th i s  a l t e r n a t i v e  defi-  

n i t ion  exis ts  b e c a u s e  r o t a t i o n s  a s s o c i a t e d  wi th  t he  s t ra in  

c o m p o n e n t  a re  s y m m e t r i c a l l y  p a i r e d ,  so t h e y  cance l  

e a c h  o t h e r  o u t  (Fig.  2). 

A s imp le ,  bu t  t o o - o f t e n  o v e r l o o k e d ,  ru le  is tha t  ro- 

D =  S R  

b "--.~-~. - /  a 
" v "  

D = R S '  

b - . f - - - x .  a 

In both cases, Rij = ) 1 
os R sin R 

~-sin R c o s  

Fig. 2. Alternative decompositions of the finite deformation D, and 
the meaning of the finite rotation R. In the upper decomposition, the 
order of matrix multiplication corresponds to performing the rigid- 
body rotation first and the distortional part of the deformation (the 
'stretch') second, without further rotation of material lines in the 
principal directions of stretch. In the lower decomposition, the order 
of matrix multiplication corresponds to performing the stretch first, 
without rotating lines in the principal directions of stretch, and then 
performing the rigid-body rotation. The components of the rigid-body 
rotation R are identical for both decompositions, but the components 
of S and S' are different. Note that any generally-oriented line (a) is 
rotated by the stretch part of the deformation (relative to the principal 
axes of stretch) but that there is always another line (b) that is 
symmetrically disposed across the principal axes, that rotates by an 
equal amount but in the opposite sense. So all these rotations associ- 
ated with the stretch add up to zero. The average rotation of all 
material lines is therefore equal to the rotation (R) of the principal axes 

of stretch, in the designated refcrcnce frame. 



Rotational quantities in homogeneous flow 

i / 
\ . . . . . .  . q  - -  _ . . . .  + . . . . . . . .  ; _ _ _  , _  

Total velocity field Stretching component Vortical component 

I : E : I  + l ° .3 -3  -.3 -.3 0 

Components of Components of Components of 
velocity gradient tensor L stretching tensor s vorticity tensor W 

Fig. 3. Decomposition of the velocity field about a point into its stretching and vortical components.  In this particular case 
the total field is a homogeneous simple shearing at 45 ° to the reference axes (dashed). Note that the velocity vectors in the 
top diagrams and the tensor components below them, a d d  to yield the vectors shown for the total velocity field, and the 
components in the matrix of the tensor L. The numbers in the L matrix are related to the velocity variations from point to 
point (the velocity gradients) in the corresponding vector diagrams as follows. The upper left component (L~)  is 0.3 
because the horizontal component of velocity (v~) varies by +0.3 between any pair of particles separated by unit distance in 
the direction of the positive horizontal co-ordinate axis (xl). (Assume unit distance for the distance between marked 
particles, horizontally and vertically; also assume velocity vectors drawn to the same scale numerically as the interparticle 
distances.) The lower left component (L21) is - 0 . 3  because this is the variation or gradient in v2 for each unit distance in the 
positive direction along x~. Similarly with the two components in the right column of the L matrix (L~2 and L22 reading 
downward). These give the variation or gradients in v i and v 2 between particles separated by unit distance in the vertical (x2) 

direction. 

439 

tations are reference-frame dependent.  It means 
nothing to say that a rotation is zero or non-zero, unless 
a reference frame is also specified. A writer may assume 
that a reader will understand that he means zero rotation 
with respect to a geographic reference frame, but this 
should never be left unstated. There  are many other 
features to which reference frames can be pinned, in- 
cluding bedding or foliation traces and axial planes or 
shear zone boundaries. Specification of a reference 
frame is equally important  whether one is dealing with 
the rotational component  of a de fo rmat ion- -a  rigid- 
body rotation of a whole volume or area of mate r ia l - -o r  
with the rotation of a particular material line. A refer- 
ence frame can always be chosen that is fixed to material 
lines in the principal directions of finite strain, rotating 
with them in geographic space. Where  this choice is 
made, any finite deformation becomes irrotational. 

When reference frames are chosen with one axis fixed 
to internal structural features, like the boundaries of 
twin lamellae or larger-scale shear zones, the rotations 
of lines have been called internal rotations (Sander 1970, 
p. 38). We can extend this usage here, and use the term 
internal rotation as a general term for the rotation of an 
individual material line, or the average rotation of all 
material lines, relative to some reference frame other 
than the geographic one. But again, the particular inter- 
nal reference frame must always be exactly specified. 
Reference frames can be pinned to any material line as 
above, or to any immaterial  but identifiable l ine--such 
as the trace of a migrating fold axial plane. 

The term external rotation can be used, again follow- 
ing Sander, for rotations relative to a geographic refer- 
ence frame. But sometimes it may be convenient to use 
internal and external simply to distinguish reference 
frames on two different, nested scales-- for  example 
internal rotation of worm burrows relative to bedding on 

a fold limb and external rotation of the worm burrows 
relative to the axial plane of the fold. 

Vorticity 

Much of what has just been said about the rotational 
component  of a deformation applies similarly to the 
rate-of-rotation quantity called the vorticity. The flow at 
any point in a continuum at an instant can be factorized 
into a pure rotating part  called the vorticity, and a pure 
straining part  called the stretching component  (Fig. 3). 
These add vectorially to yield the total velocity field at 
the point and add as matrices to give the velocity gradient 
tensor (L) that describes the velocity field locally. 
(Readers  unfamiliar with the velocity gradient tensor 
can find an introduction to it in Passchier (1988, pp. 323- 
325) and in Means (1990, p. 955). A few details are also 
explained here, in the caption of Fig. 3). Like the 
rotation, the vorticity is reference-frame dependent .  In 
particular, it can be viewed from some relatively remote  
reference frame,  like a geographic frame or a large fold- 
axial plane, or it can be viewed from the reference frame 
of the stretching directions--the principal directions of 
the instantaneous increment of strain (horizontal and 
vertical in Fig. 3). These have been called the external 
and the internal vorticity, respectively (Means et al. 
1980). 

When expressed as a single number,  the magnitude of 
the vorticity (W) is twice the average angular velocity of 
all material lines through a given particle, or, equiva- 
lently, the sum of the angular velocities of any instan- 
taneously orthogonal pair of material lines. The 
symmetrically paired angular velocities associated with 
the stretching component  cancel each other out, and the 
residue is a set of angular velocities that are those of a 
rotating rigid body. The definition of vortieity magni- 
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Fig. 4. Mohr circles for the velocity gradient tensor L and vorticity numbers Wk for simple shearing, pure shearing and a 
typical intermediate or 'mixed'  flow. Diagrams on the right indicate finite deformations resulting from a steady flow of each 
type, maintained for a suitable time. The vorticity number  for each flow type is equal to the ratio of the height (ht) of the 
center of the Mohr  circle above the horizontal Mohr axis, to the radius (rad) of the circle. The height is the average angular 
velocity (dJ) of all material lines (half the vorticity), and the radius is half the difference between the maximum and minimum 

extension rates or 'stretchings' .~ and ~ .  

tude as twice this rigid-body rotation-rate seems unna- 
tural (Simpson & De Paor 1992), but it leads to a simple 
definition of the 'vorticity number '  defined below. The 
units of vorticity are radians per unit time. 

The choice of the instantaneous stretching directions 
for a reference frame is an important one because flows 
having vorticity in this frame are flows in which material 
rotates through the stretching directions. Simple shear- 
ing is an example. All such flows are said to be non- 
coaxial, because (at least two of) the principal directions 
or axes of incremental strain at each moment are not 
parallel to the principal directions of the finite strain so 
far accumulated. The response of rocks to this asym- 
metrical type of strain accumulation is of interest be- 
cause it is expected to be common in high-strain zones of 
most kinds, including shear zones and the limbs of many 
folds. 

Vorticity number 

Vorticity alone is not a very significant quantity for 
structural development.  The effect that vorticity has on 
strain-induced structures depends on the ratio of the 
vorticity magnitude to some measure of the concurrent 
rate of straining. A measure proposed by Truesdell 
(1953) is the ratio of the vorticity to the different be- 
tween the principal stretchings Sl and s3. This is called 
the kinematic vorticity number (Wk), and it ranges from 
0 for coaxial, pure shearing to 1 for simple shearing, 
Values greater than 1 are also possible (Ramberg 1975, 
Ramsay & Huber  1983, p. 233, Weijermars 1991) 
though they are expected to prevail only locally in 

flowing rock bodies, in eddy-like local concentrations of 
vorticity. The definition of Wk given above is suitable for 
two-dimensional flows without area-change, or for 
three-dimensional flows viewed in a plane of no area- 
change normal to the vorticity vector (the axis of ro- 
tation). More general definitions and discussion are 
given by Means et al. (1980), Passchier (1987) and 
Weijermars (1991). 

Vorticity numbers can be understood graphically by 
drawing Mohr circles for the L tensor (see Means 1990, 
p. 955) for situations intermediate between pure and 
simple shearing (Fig. 4). These circles are graphs of 
angular velocity of material lines vs extension-rate, for 
lines in all orientations through a given point. The 
vorticity number for a flow is the ratio of the vertical 
distance of the center of the circle from the horizontal 
axis to the radius of the circle (Lister & Williams 1983). 

Passchier (1988) has shown how this same relationship 
exists in Mohr space for a Mohr circle representing the 
finite deformation tensor. If a flow is steady and charac- 
terized by a vorticity number of/) .7 ,  the finite defor- 
mation throughout the flow will also be represented by a 
Mohr circle that has a ratio of 0.7 between the distance 
of its center from the horizontal axis and its radius. 
Passchier calls this ratio the mean vorticity number. For 
steady flows, it is the true vorticity number that actually 
prevailed throughout the history. For non-steady flows 
with varying vorticity numbers, the mean vorticity num- 
ber has no simple relationship to the history of Wk, but it 
may sometimes be a useful 'average' value anyway. The 
mean vorticity number, interpreted as above, requires a 
reference frame as in the right parts of Fig. 4, fixed 
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Fig. 5. A shear zone (shaded) with attached internal reference axes i 
rotating in an external reference frame e at an angular velocity defined 
as the spin or (~i~. When this spin is added to the average angular 
velocity of material in the shear  zone relative to axes i ((Omi), the sum is 
the average angular velocity of the material with respect to the external 
frame (om~.). This leads, via the definitions of internal vorticity (IV) 

and external w)rticity (EV), to the second equation. 

relative to a material line that was itself fixed relative to 
the stretching directions. 

Spm 

The spin (following Means et al. 1980) is the rate of 
rotation of the stretching directions relative to some 
external (often geographic) reference frame. There is an 
additive relationship between external vorticity, inter- 
nal vorticity and spin (Fig. 5); the external vorticity can 
be factorized into a spin component and an internal 
vorticity component which add to give the external 
vorticity. The spin component is not expected to have 
any direct effect on structure, except where structures 
are sensitive to the direction of the gravitational acceler- 
ation. Mohr diagrams showing spin added to the internal 
vorticity raise or lower the circles relative to the horizon- 
tal axis. 

The addition of spin to a flow can always erase its 
external vorticity, but no amount of added spin can 
remove non-coaxiality. This is represented by the Mohr 
diagrams of Fig. 6 for a steady simple shearing. The 

added " i ~  ¢ ~  ," 
spin ~ ~ ( - - , , .  ~ 

s 3 ~  Sl 

SZB 

Fig. 6. Mohr circles for the L tensor, for a simple shearing with zero 
spin (dashed),  and with lust the right counterclockwise spin added to 
make the external vorticity zero (solid). In this condition material lines 
instantaneously under  the stretching directions are not rotating in the 
external reference frame, but they a r e  rotating clockwise relative to 
the stretching directions. This latter rotation, which makes  the flow 
non-coaxial, is represented by the heavy arrows passing through the s 1 
and s3 points. Point SZB on both circles represents  material lines 

parallel to the shear zone boundary,  taken to be the xl direction. 

internal vorticity essential for non-coaxiality is rep- 
resented by the circumferential arrows indicating how 
points for particular material lines circulate in one direc- 
tion around the circle, passing through the stretching 
direction points, and all points but the 6 o'clock point 
(labeled SZB). They circulate at twice the angular rate 
that the corresponding material lines are rotating in 
geographic space. Adding spin can raise or lower the 
circle, but never remove this circulation. 

RECOGNITION OF NON-COAXIALITY FROM 
STRUCTURE 

Recognition that rock fabrics can reflect non- 
coaxiality of flow goes back at least to Sander (1911). 
According to Sander, the Symmetry Principle requires 
that velocity or displacement fields possessing a single 
plane of symmetry should give rise to fabrics possessing 
the same single plane of symmetry. Thus, non-coaxial 
flows are expected to result in fabrics of lower symmetry 
than coaxial flows. Coaxial flows acting on initially 
isotropic rocks should give fabrics with three or more 
planes of symmetry. Law et al. (1984) and Schmid & 
Casey (1986), for example, use these rules to interpret 
quartz fabrics and there are many similar interpretations 
in the literature. The Symmetry Principle is a powerful 
intuitive aid to fabric interpretation, but no one yet has 
found a way to make it yield quantitative information on 
the degree of non-coaxiality in flows intermediate be- 
tween pure and simple shearing. In addition, there are 
two obstacles to using fabric asymmetry as an indicator 
of non-coaxiality. Where the initial fabric is anisotropic, 
a low-symmetry deformed fabric can be expected, even 
from a high-symmetry, coaxial flow pattern (Paterson & 
Weiss 1961). Second, two perfectly coaxial, non- 
spinning flows, if superposed with non-parallel stretch- 
ing directions, can give a total, rotational deformation in 
the geographic reference frame (Flinn 1978), with asym- 
metric fabric features mimicking the product of a single 
deformation accumulated non-coaxially. This is closely 
related to the fact pointed out by Ramsay (1962), that 
oblique superposition of successive strains is always 
expected to lower the symmetry of whatever internal 
rock structures are influenced by both strains. 

Incremental strain indicators are particularly helpful 
for recognizing the products of non-coaxial flow. These 
were used in the classic papers by Durney & Ramsay 
(1973), Wickham (1973) and Berth6 etal.  (1979), where 
crystal fibers were taken to indicate the direction of late 
extension, and non-coaxiality was inferred from non- 
parallelism of these late fibers with earlier ones (Wick- 
ham, Durney and Ramsay) or with an S foliation be- 
lieved to represent the local, total extension direction 
(Berth6 et al. ). 

Another qualitative indicator of non-coaxiality was 
employed by Beach (1979), who observed asymmetric 
orientations of directions of no finite elongation in 
belemnite populations, when the orientations were 
measured clockwise and then anticlockwise from the 
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Fig. 7. An example of apparent violation of the Symmetry Principle. A grain-shape foliation (right) with the full 
orthorhombic symmetry of the strain ellipsoid, develops during a progressive simple shearing, in which the symmetry of the 
velocity and displacement fields is not orthorhombic, but monoclinic (in a reference frame fixed to the shearing direction). 
The dashed lines represent planes of fabric symmetry that are absent in the velocity and displacement fields. This behavior 

requires ideally passive behavior of the initial grain boundary array (left) throughout the progressive deformation. 

direction of maximum finite elongation. This is not 
expected if the belemnites behave like ideal passive 
markers, even in a non-coaxial situation. Beach attri- 
butes the asymmetry in his rocks to a combination of 
non-ideal behavior of the belemnites (lengthening but 
not shortening with the matrix) and non-coaxiality of the 
flOW. 

Schrader (1988) describes how an asymmetrical 
arrangement of striations on pebble surfaces in de- 
formed conglomerates may be used to recognize non- 
coaxiality. The striations are interpreted as direct indi- 
cators of displacement directions of matrix particles 
relative to the pebble surface. 

The first quantitative estimate of the vorticity number 
that I know of was obtained by Passchier & Urai (1988), 
using inferred rotations for a vein-set and for bedding in 
a slate outcrop, and a stretch value for the (boudinaged) 
vein set. The basis for this and related methods is 
discussed in Passchier (1990). The value of the mean 
vorticity number obtained was 0.8 + 0.1, suggesting a 
flow closer to simple shearing than to pure shearing. The 
next estimate was made by Vissers (1989) using the 
shapes and rotations of garnets in a mylonitic quartzite. 
A ratio of pure shearing to simple shearing of 0.65 was 
obtained, which translates into a vorticity number of 
about 0.6. 

More recently, Wallis (1992) has made an estimate of 
the mean vorticity number in metacherts, using radiolar- 
ian shapes to define the finite strain, and the angular 
distribution of veins with various stretching histories to 
define the degree of non-coaxiality. Mean vorticity num- 
bers between about 0.5 and 0.7 were obtained. An 
independent estimate of mean vorticity number in the 
same rocks was made, assuming that the central part of 
the quartz c-axis girdle is parallel to a principal plane of 
strain (see Wallis 1992 for details). This estimate yielded 
a vorticity number in the range 0.35 4).6, consistent with 
the estimated based on radiolaria and veins. 

SENSITIVITY OF STRUCTURE TO NON- 
COAXIALITY 

The Symmetry Principle predicts that asymmetric 
rock structure should be associated with non-coaxial 
rock flow, but it does not specify any particular mechan- 
isms leading to this association, or admit of situations 
where the Principle can be violated. We take up these 
matters below. 

The Symmetry Principle is apparently violated where 
flow proceeds with homogeneous (non-partitioned) ve- 
locity gradients and where the structural change is 
brought about by perfectly passive reorientation of 
structural elements. An approximation to this in rocks is 
the development of a grain-shape foliation by homo- 
geneous simple shear of a set of initially equiaxed grains, 
with non-migrating boundaries. Here the resulting 
shape fabric, defined by the array of grain boundaries in 
the deformed state, displays the full symmetry of the 
strain component of the deformation (Fig. 7). We return 
to this apparent disobedience later. 

When the Symmetry Principle is obeyed, one of the 
following descriptions applies. 

Structural elements follow oblique special directions 

Asymmetry of a structural assemblage arises where 
the total structure is made up of several elements and 
where these elements follow different, non-orthogonal,  
special directions in the bulk flow field. The best known 
example is provided by S and C foliation combinations in 
shear zones (Berth6 et al., 1979), where S approximately 
follows the flattening plane of finite strain and C 
approximately follows the internally non-rotating direc- 
tion (eigendirection) that is parallel to the shear zone 
boundary. Other special directions that may influence 
the orientation of foliations and give asymmetry to total 
shear zone structures are the instantaneous elongation 
direction (Lister & Snoke 1984) and the second eigendir- 
ection (Bobyarchick 1986), or directions of maximum 
shear strain-rate (Simpson & De Paor 1992). 

Separate parts of  structures are introduced sequentially, 
in special directions 

Here asymmetry arises, not because of simultaneous 
development of oblique elements, but because of se- 
quential introduction of elements following a special 
direction with respect to which the material as a whole is 
rotating. The best example are curved crystal fibers 
developing as proposed by Durney & Ramsay (1973) 
and Wickham (1973). New fiber segments are intro- 
duced about parallel to the instantaneous elongation 
direction, while older ones are rotating out of this 
orientation. Another  example is provided by the tips of 
propagating veins, which are aligned approximately in 
the local instantaneous shortening direction. It is necess- 
ary for this type of asymmetry that the older, rotated, 
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Fig. 8. Schematic diagram showing how veins a and b, symmetrically 
disposed across the maximum finite extension direction (S~) in the 
deformed state, are expected to have somewhat different structures, if 
the early folding of vein a was incompletely reversed or removed as it 
rotated from the shortening field into the lengthening field (i.e. as it 

rotated through the normal to the shear direction). 

parts of the structures be preserved as deformation 
proceeds. 

" "" s3 

,cb 

f ---- 

Structural changes are imperfectly reversible 

This reason for asymmetry is a very general one, and 
probably means that on some scale (perhaps very small) 
all rock fabrics developed during non-coaxial straining 
must be asymmetric. Even the grain-shape foliation 
mentioned above that was said to violate the Symmetry 
Principle, should, in a real rock, always be found to bear 
some slight asymmetry that would, after all, reveal its 
non-coaxial history. 

The easiest example to understand of asymmetry 
resulting from irreversibility of structural change is pro- 
vided by diversely oriented deformed vein sets in shear 
zones (Passchier 1990, Wallis 1992). When veins (or 
other strong layers) in orientations like A in Fig. 8 are 
sheared, they first shorten but later lengthen, if the shear 
strain is large enough. The shortening is accompanied by 
folding. The subsequent lengthening is accompanied by 
partial unfolding and pulling apart (vein a, Fig. 8). The 
structural change upon shortening is incompletely 
reversed upon lengthening. The vein therefore carries in 
its final state some evidence or structural 'memory' of its 
prior shortening. Contrast this with the history and 
structure of a vein in initial orientation B (Fig. 8). This 
vein ends up with the same net longitudinal strain as vein 
A, but it has never shortened, only elongated and come 
apart throughout the history. The resulting asymmetry 
of flow is manifest in the fact that veins a and b, equally- 
inclined to the finite flattening plane in the deformed 
state, have different shapes. 

Another kind of strain reversal in shear zones, that is 
less familiar than the shortening-to-lengthening behav- 
ior above, is reversal in the instantaneous shear sense 
across material lines as they rotate through the stretch- 
ing directions (Fig. 9, top). In a dextral shear zone, the 
shear sense changes from sinistral to dextral as lines 
rotate through the elongation stretching direction, and 
from dextral to sinistral as they rotate through the 
shortening stretching direction. On a Mohr circle for the 
velocity gradient tensor (see Passchier 1988), the ro- 
tation of material lines through the stretching directions 
is represented by circulation of points representing the 
lines around the circle (Fig. 9, bottom). The reversal in 
shear sense across a material line, with respect to its 
instantaneously normal line, can be seen from the fact 

Fig. 9. Reversal of instantaneous shearing sense as material lines 
cross the stretching directions in a non-coaxial flow. Top part shows a 
material line (heavy) switching from sinistral to dextral shearing as it 
crosses the J~ stretching direction. The switch corresponds in the Mohr 
diagram below to the circulation (curved arrow) of a point rep- 
resenting the material line through the ~ point on the circle; past this 
point the clockwise angular velocity of the line becomes less than the 
clockwise angular velocity of an instantaneously orthogonal line, so 

the sense of shearing reverses. 

that any point on the lower half of the circle corresponds 
to a material line with a lower clockwise angular velocity 
than its instantaneously normal line, represented by a 
point diametrically opposite on the upper half of the 
circle. Such a line is being sheared dextrally. The situ- 
ation reverses when the point representing a line circu- 
lates into the upper half of the circle. Then the line 
begins to be sheared sinistrally. This reversal of shear 
sense of a line with respect to its instantaneous normal 
should not be confused with the reversal of finite shear 
strain of a line with respect to its original normal (dis- 
cussed in Means 1976, p. 235, Simpson & De Paor 1992). 

While shear structures with a memory of shear- 
reversal have not yet been described, such features may 
eventually be recognizable in rocks. Suppose for 
example that it becomes possible, perhaps by electron 
microscopy, to distinguish between twins in calcite that 
have sheared in one direction only from twins that have 
sheared first in the usual twinning direction and sub- 
sequently sheared in the opposite direction. (Reverse 
shearing across a twin is possible once the twin has some 
finite width. Reverse shearing untwins and narrows the 
lamella--Fig. 10.) If double-sense twins can be identi- 
fied, then their orientations relative to the orientations 
of single-sense twins, and any associated finite strain 
indicator, should be useful for detecting and perhaps 
measuring non-coaxiality. 

Structures mark patterns of flow perturbation, revealing 
the underlying asymmetry of flow 

A criticism lodged against the kind of analysis above is 
that it relies too heavily on geometric properties of bulk 
flow and bulk deformation, overlooking the fact that 
deformation is conspicuously partitioned, on many 
scales (Bell 1981). This is certainly a legitimate criticism. 
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Fig. l(/. Hypothetical reversal of shearing sense as a twin lamella 
rotates through the .i3 stretching direction. The lamella achieves a 
certain width (left) under  dextral shearing, then partially untwins and 
narrows (right) under  sinistral shearing. The regions between the 
dashed and solid lines have twinned and then untwinned and may be 
microstructurally different from the regions outside the dashed lines, 

which have never been twinned. 

It cannot be correct, for example,  to say that an S 
foliation in an S domain of an S-C deformed granite 
follows the finite flattening plane of the bulk defor- 
mation. The most the S foliation can do is follow the 
finite flattening plane for the local deformation within 
the S domain. A similar weakness exists in the sugges- 
tion made above that the sense of shear across a calcite 
twin lamella might reverse as the lamella rotated 
through a stretching direction. This was discussed as if 
the calcite grain was deforming homogeneously with the 
bulk flow. But most of a twinning calcite grain is in fact a 
rotating rigid object (assuming no deformation by slip). 
The current host and current twin lamellae are regions of 
zero strain-rate. The only actively straining regions at 
any given moment  are narrow zones along each bound- 
ary of a broadening or narrowing twin lamella. So it 
makes little sense to treat the situation as if reversal in 
the bulk shear sense across a lamellae would necessarily 
lead to a reversal in the local shear sense. Whether  and 
when this occurs across an individual lamellae depends 
on the unknown local displacement geometry around 
the lamella, or in other words on the direction and 
magnitude of the local shear stress. The only justifi- 
cation for using theoretical arguments based on the bulk 
flow geometry to predict local flow patterns and struc- 
tural adjustments is that it is the best method we have at 
present,  and it often seems to provide a pretty good 
approximation to the 'statistical' or averaged properties 
of fabrics. However  it is always good to define bulk flow 
properties on as local a scale as poss ible- - for  example to 
relate fabric features in S-C granites, to a bulk flow in 
the S domains or to the different bulk flow in the C 
domains,  rather than to one bulk flow for the shear 
zones as a whole. Used this way, continuum concepts 
can continue to be useful even in rocks with disconti- 
nuities in strain or rotation. But there are limits beyond 
which this approach becomes very difficult. These are 
met with for example when one considers asymmetric 
structural features developed in deforming blocky sus- 
pensions, such as the grain tiling structures described in 
granite by Blumenfeld & Bouchez (1988). Here  the 
structural feature arises from piling-up of rotating rigid 
crystals, and it exists on approximately the same scale as 
the crystals themselves. Behavior like this, in particulate 
systems where the particle size is comparable with the 

3, 

Fig. 11. Asymmetr ical  perturbation of a regular laminar flow (top) by 
growth within the material of a rigid porphyroblast.  The resulting 
asymmetric structure comprises the deflected foliation around the 
porphyroblast and two pressure shadows (dashed). Movements  are 
indicated with respect to a reference frame with a horizontal axis fixed 
to a material line midway between the horizontal arrows, and remote 

from the porphyroblast.  

scale of the structural features, is beyond the scope of 
this paper,  except for the relatively simple case de- 
scribed below. 

Some very familiar kinds of asymmetric structures in 
zones of non-coaxial flow arise because of flow pertur- 
bations induced in a matrix material around less deform- 
able objects. Imagine for example,  a mylonite flowing by 
some close approximation to dextral laminar flow. Then 
imagine that a rigid garnet porphyroblast  begins to grow 
and perturb the laminar flow. Whatever  the details of 
this perturbation,  the local flow pattern around the 
upper left and lower right boundaries of the garnet are 
bound to be different from the local flow pattern around 
the lower left and upper  right boundaries (Ghosh & 
Ramberg  1976). Many asymmetrical microstructures in 
shear zones arise from asymmetrical flow patterns of this 
general type, the best known example being asymmetric 
'pressure shadows' enriched in quartz around strong 
objects like garnets (Fig. 11). 

CONCLUDING REMARK 

One may well ask whether structural geologists really 
need to understand such previously obscure rotational 
quantities as the spin and the internal vorticity. Are 
these quantities genuinely useful, or just trendy? My 
suggestion is that the spin and the internal vorticity, like 
the strain-rate, are part  of the best-available f ramework 
we have for rigorous thinking about the kinematic sig- 
nificance of structure. Current and difficult problems,  
like the problem of porphyroblast  rotation, must be 
approached by workers who are familiar with these parts 
of the terminology and techniques of continuum mech- 
anics. On the other hand, it must be kept in mind that the 
spin, the internal vorticity and the strain-rate are all 
defined in continuum mechanics as mere point proper- 
ties. By themselves, or in simple combinations like the 
vorticity number,  they are not closely linked to struc- 
ture, because most structure of interest (like a porphyro- 
blast with spiral inclusion trails) extends over a finite 
volume of material and reflects the distribution of the 
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spin, or internal vorticity, or strain-rate over the vol- 
ume, and the variation of these fields and their disconti- 
nuities over time. So understanding spin and internal 
vorticity, or estimating bulk vorticity numbers for rocks, 
gets one started, but not very far toward understanding 
structure kinematically. Here, as in other parts of geo- 
logical mechanics, the time seems ripe for a new empha- 
sis on teaching theory relevant to structural geology, 
first through new literature such as the recent, focused 
teaching books by Passchier et al. (1990), Hanmer & 
Passchier (1991) and Bayly (1992), and eventually 
through generally strengthened university courses and 
curricula. 
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